
Empirical Analysis of Denial of Service Attack Against SMTPServers

Boldizsár Bencsáth, Miklós Aurél Rónai
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
∗Budapest University of Technology and Economics, Hungary

{bencsath, ronai}@crysys.hu

ABSTRACT

In this paper we show that the performance of the generic
SMTP servers are more limited than we previously thought.
We implemented a environment to test SMTP server perfor-
mance focusing on Denial of Service (DoS) attacks. Our
measurements show that a standard SMTP server can be
easily overloaded by sending simple email messages and the
overload can occur without consuming all network band-
width. Our measurements also show that the usage of
content filtering applications can harm the performance so
much that the server become even more vulnerable to DoS
attacks. In the paper we describe the problems of perfor-
mance measurements in SMTP environment and we also
give a detailed background about the performed measure-
ments.

KEYWORDS: E-mail, SMTP, DoS attack, bechmark,
throughput

1 INTRODUCTION

Denial of Service (DoS) attack is a hot topic in research,
but no single solution can be developed to solve the general
problem of DoS. The internet mail delivery service, which
is provided by Mail Transfer Agents (MTA) that use the
Simple Mail Transfer Protocol (SMTP) for exchanging e-
mails, is often a target of intended or unintended DoS at-
tacks. In this paper we investigate the behavior of various
MTA server implementations under heavy load that can lead
to denial of service. We will show that the SMTP servers are
highly vulnerable to such attacks, as only a small number of
emails (small bandwidth) is enough to fully load an SMTP
server that can lead to a DoS condition. We do not intend
to give information on countermeasures. There are a num-
ber of possible solutions proposed against DoS situations,

∗This work was performed in the frame of the EU project IST-026600
DESEREC, “Dependability and Security by Enhanced Reconfigurability“.
The authors thanks for the help and support of all project partners.

e.g we proposed to use traffic level measurements in a DoS
front-end ([1]). In the current paper our goal is to help the
understanding why SMTP servers are so much affected with
DoS related problems, and why such countermeasures are
important. We also do not claim that measuring throughput
of a server is something really novel, but in fact, we found
no such usable information (e.g. scientific paper) to help
or base our work in the field of DoS protection of SMTP
servers.

2 RELATED WORK

The available information of SMTP server benchmarking is
limited. There are some comparisons on different MTAs
carried out by independent persons (e.g., [8], [9], [10]).
Some of these do not give enough detail to get information
about possibility of DoS attacks and mainly performance is
covered, while other papers do not give enough insight into
the testing. Many of the information available today is also
outdated.

There are also some tools to help measuring SMTP
throughput, like [11] or the more sophisticated tools like
smtp-source included in Postfix ([15]). These tools are help-
ful, but even if they are available, the analysis has still tobe
done.

There is also a number of performance analysis on pro-
prietary software, e.g., on MailMarshal ([12]), but their
main goal is to show how much their product is better, they
are not focusing on the problems like DoS attack. Whole
methodologies of performance testing is also available, like
for Microsoft Exchange the MMB3 benchmarking standard
([2]) was developed. This methodology is very sophisti-
cated but aims to gather data on the general behavior of
the SMTP server rather than to focus only SMTP delivery.
SMTP delivery is important, because incoming e-mails are
under the control of a possible attacker. In our work we
focus on SMTP performance regarding DoS attacks.

In case of distributed denial of service attacks (DDoS)
the service on the server is hanged due to the high load sev-
eral machines cause by requesting the same service from the

same server at the same time. Regarding DoS and DDoS at-
tack several research papers are available (e.g. [3], [4], [5]),
and many other papers mention the probability of applica-
tion specific DoS attacks. Sometimes even SMTP DoS at-
tacks due to e-mail flooding are directly mentioned, but they
do not give enough information about the circumstances un-
der such attacks can happen.

3 DOS OF SMTP SERVERS

Several reasons can result in denial of service in SMTP
servers. SYN flood or network traffic flood or attacks on
special programing errors are the most basic DoS attacks
against servers. These are general attacks, not specifically
designed to harm SMTP servers. In our paper we focus on
the possibility of basic DoS attacks specifically designed
against SMTP servers. An example for specific SMTP DoS
attack is when a malicious attacker starts an intended at-
tack by sending thousands of e-mails with several machines
to one single SMTP server. SMTP DoS can happen also
unintendedly, where the high e-mail load is not due to an
attacker that wants to harm the SMTP server, but, for ex-
ample, by non malicious users that want to send out too
many e-mails at the same time (e.g., electronic newslet-
ters). Sometimes infected computers (e.g., by virus or e-
mail worm) in protected areas (company intranet) can flood
the company SMTP server resulting the server to hang.
Spammers can cause DoS unintendedly by Directory Har-
vest Attacks (DHA), where they are trying to collect valid
e-mail addresses. We can also mention backscattering at-
tacks, when the attacker forces the SMTP server to generate
a huge number of non-delivery reports (NDA) [6].

In all these cases after exceeding a certain load the SMTP
server can not any more provide the same performance as
before, its performance decreases, e.g., e-mails are deliv-
ered only after hours, or even the whole machine can crash.
Looking at the situation a bit more deeper the following
things happen with the SMTP server. If the size of the e-
mail queue is big, which may be the case due to undeliv-
ered mails, then the periodically attempts to deliver the e-
mails in the queue cost a lot of effort. For example in case
of Exim ([13]) if we set the retry parameter to 5 minutes,
then one retry attempt to deliver thousands of e-mails in the
queue could take significant time and resources in every 5
minutes. This operation leaves only a low percentage of the
normal performance to do something else, e.g., to handle
incoming e-mails.

Under heavy load, most MTAs change their behavior and
turn into a queueing-only mode. In this mode they receive
e-mails from the network, they act as an SMTP server, but
they put these e-mails into a temporary queue and do not
start any processing or delivery action until the system load
returns to the normal, or other events trigger the delivery

function.
In case the load is high and the incoming e-mail has to be

stored in the queue, then depending on the storage method
this can mean creation of a file and a deletion of it after de-
livery, which cause additional load again, but this time on
the filesystem. So in case the e-mail can be delivered im-
mediately after receiving, then these filesystem operations
can be avoided and the overall e-mail delivery throughput is
higher than in case of using the mail queue.

So all in all overload has a bad effect on performance,
since in an overload situation the server can consume more
resources to deliver the same performance and it increases
the probability of a DoS.

3.1 Definition of SMTP DoS

Generally, overloading SMTP servers does not cause a sys-
tem crash. In fact, SMTP protocol contains countermea-
sures for DoS attacks. If the load is too high, the server can
stop receiving mails with temporary errors or just by refus-
ing connections. As SMTP is a delay tolerant service, the
other party can send the particular e-mail later.

Definining a DoS condition as system crash or e-mails
lost is useless. The most important thing is the user expe-
rience. If a message is received only after 3 hours, it can
easily be understood as a DoS for that receiver party. So
our definition of the SMTP DoS is the case, when the de-
livery process is harmed so much that the legitimate e-mails
are affected with a non-tolerable delay.

In our investigation we do not want to identify the ex-
act amount of delay or the actual point when the DoS sit-
uation is clearly visible. We tried to figure out the maxi-
mal throughput of the SMTP server. If the amount of mes-
sages exceeds this bandwidth, it surely causes delays. If the
amount of the SMTP traffic exceeds much of the maximum
sustainable traffic, then it can surely cause a bad user expe-
rience, or, as we defined sooner, an SMTP DoS.

3.2 Factors of SMTP performance and Prob-
lems of Benchmarking SMTP Servers

We identified the following factors that influence the perfor-
mance of SMTP servers. Measuring all these performance
factors individually is a very hard task and can be very com-
plex. But if we don’t measure individual factors, just the
performance of the whole system (which is also very com-
plicated), then we loose significant information about the
reasons of the difference between different solutions.

3.2.1 Processor Performance

Processor performance is clearly an important aspect of
SMTP performance. E-mail delivery does not seem to be

a processor consuming activity, but SMTP become quite
complicated due to the appearance of additional tasks like
sanity checking, re-writing, spam filtering. Taking all these
mail delivery related functions into account processor per-
formance can be a real bottleneck.

3.2.2 Memory Performance

Memory size and speed is not the biggest issue in e-mail
transfer, since e-mail delivery is basically a data-transfer.
However, in the past years the memory consumption of
MTA solutions became higher than before, due to excessive
using of Bayes databases.

3.2.3 Network Performance

Since SMTP is an internet service, network performance is
important, but we show, that not only network bandwidth is
important regarding DoS attacks.

3.2.4 Storage Performance

Storage (hard disk) performance is one of the key issues
in SMTP delivery. Not because emails needs high storage
capacity, but the real reason is that a typical mailbox and
a typical SMTP working queue can contain thousands and
tens of thousands of messages. If every e-mail message is
stored in a distinct file, then simply working with that num-
ber of files in directories or accessing so much random data
on the disk can seriously affect the performance of the sys-
tem.

3.2.5 Hardware System and Architecture

Of course, the whole system architecture, the operating sys-
tem and the I/O speeds also highly affects the performance.
SMTP performance can clearly benefit from using multiple,
low latency disk drives with large caches (or hybrid disk
drives in the future), or multiple processor cores.

3.2.6 Software Performance

The right software should be applied to the right hardware
to obtain optimal SMTP performance. This is true in gen-
eral, but SMTP is not about the performance. SMTP is used
because of the off-line properties, the reliability, the rich
features amongst other things. It is not easy to compare dif-
ferent e-mail MTA solutions, as the goal of the software de-
velopment could be very different. A software could be de-
veloped to be feature-rich and easy-to-administer or highly
compatible, while other softwares could built to be robust,
high-performance or maximum security. In our test the dif-
ferent MTAs show different properties, but the e-mail de-
livery performance is not the single property we should be
aware when we select an MTA software for use.

4 BENCHMARK METHODOLOGY

It is not straightforward to provide a benchmarking method-
ology that can be fitted to all kind of SMTP server imple-
mentations, since each and every real life MTA configura-
tion is different. For example, there are different hardware
in use, the number and the type of the handled domains and
the amount of users is also varying, and the e-mail traffic is
also not the same with respect to the size and the number of
e-mails.

In a real life situation during the attack also legitimate
traffic exists, which varies among different domains, differ-
ent time periods of the day, so it is impossible to identify
when the system will go in another phase neither in which
phase the system can be really found. The question, whether
the system will receive more e-mails or the attack is over,
can not be answered.

4.1 MTA software under test

For our performance measurements we selected some of the
most widely used MTA software. We have to emphasize,
that our measurements are not elaborated deeply enough to
directly compare the performance of these software solu-
tions with each other, as the exact settings, system param-
eters and system tweaking can make significant differences
in their performance. Our intention is only to show some in-
formation on how general MTAs behave under heavy load
and to investigate the possibility of DoS attacks against gen-
eral real-life content-filtering SMTP servers.

Our selected MTA software solutions were the follow-
ings:

• Qmail [14]: We investigatednetqmail 1.05with fac-
tory default settings.

• Exim [13]: The debianexim4-daemon-heavy (4.50-
8sarge2)package was used in our tests with Maildir
delivery format and in some tests we used the
queueonly load parameter. We used it as a stand-
alone daemon with a ”q1m” queuing parameter.

• Postfix [15]: We took alsoPostfix v2.3.6under investi-
gation.

• Sendmail [16]:Sendmail v8.13.8was used,QueueLA
was set to8 to get similar behavior to the others.
RefuseLA parameter was set to40 to avoid connec-
tion refused messages. We manually started delivery
process after the queue-only phase. For local delivery
(MDA) we used procmail and maildir format.

• Microsoft Exchange[17]: We checked also Microsoft
Exchange 2003 on a Windows Server 2003.

4.2 Hardware environment

Our test hardware environment consisted of some basic
hardware, which can be a model for a mail server of a small
company or academic institute. Our test computers, both
on client and server side are 2800 MHz equivalent 32bit,
single core, standard PC, with 1 GB RAM and SATA hard
drives. For OSS software we used Debian Linux with ker-
nel 2.6, for commercial software we used Windows Server
2003. We applied only minimal tweaks in the default instal-
lations, so we do not expect that this causes a big impact to
the validity of our measurements. In Linux environment we
did not use any processor or memory consuming software,
like X Windows, whereas in the Windows environment the
GUI surely consumed some system resources. Our test net-
work was a standard 100 Mbps ethernet network with 100
Mbps direct internet connectivity.

4.3 Botnet architecture for testing

For our tests we installed the so calledbotnetarchitecture.
An example for botnet can be seen in Figure 1. The botnets
usually work the following way: A virus infects plenty of
computers which are connected to the internet, and it con-
nects to an Internet Relay Chat (IRC) server as an IRC bot to
a specific channel, which is known by the attacker. So an at-
tacker needs to connect to the iRC network, join the specific
channel and give out commands to the bots that will make
the machines do what the attacker asks for. In this way a
large number of computers (zombies) can be controlled in a
resilient way, as the IRC network provides dependable ser-
vices.

Our main goal to utilize botnets was to avoid attacking
computers being a bottleneck and we chose the botnet so-
lution to coordinate our tests and initiate the attack from
multiple computers. We set up a botnet that is similar to the
generally used technique described above. Our botnet archi-
tecture can also be easily extended by new hosts to carry out
some large-scale test attacks. We use an IRC server and au-
tomatic programs (bots), but unlike the real-life simple tro-
jan programs, our bots are general, feature rich and extend-
able internet bots, so called Eggdrops [18]. We also set up
controllable small scripts in TCL which can perform tasks
according to our needs, like initiating an attack by sending
plenty of e-mails.

4.4 Phases of the measured process

As we mentioned above, most SMTP servers have two ba-
sic modes of operation: Normal operation is instant deliv-
ery of received e-mail messages, whereas under heavy load
they change to queuing only mode, when they put e-mails
in a temporary queue and deliver them later. In our test we

Figure 1: Botnet

caused a high load on the server, and we could observe 3
phases:

• DuringPhase 1The server receives and delivers email
until the load reaches the limit, and the server switches
in queuing-only mode.

• DuringPhase 2The server receives messages and puts
into a temporary queue, delivery is limited or does not
happen at all.

• During Phase 3The server gets back to normal load
that initiates (automatically by measurements or by
timer or manually) a delivery process to deliver e-mails
in the queue.

To give a better insight into the performance and activity
of the system we divided our results by the different phases
of the test. We combined Phase 1 & 2 because Phase 1 only
takes some seconds therefore not easily distinguishable. For
simplicity our tables we refer these phases as ”Phase 1 & 2”
and ”Phase 3”.

5 RESULTS

5.1 Generic SMTP throughput

5.1.1 Comparison of different MTAs

We tested the maximum transfer rate (e-mail throughput)
on different MTAs, under similar conditions. The number
of attacking machines is3, where each attacking machine
was using5 threads for e-mail sending. This gives a total
number of15 e-mail sending threads, which ensures that
the tested SMTP server is fully loaded. The payload of the
messages was4096 bytes static text. During the test we sent
5000 messages from each attacking computer to a single
mailbox, resulting15000 new e-mails in the target mailbox.
We used thesmtp-sourceutility (included in Postfix) to send
the messages. On every open-source MTA (and MDA) we

used Maildir as storage format. We ran the tests5 times to
avoid errors, and to measure the standard deviation of the
measured properties.

Table 1 shows the basic behaviour of different MTAs
during our test. The maximum e-mail throughput was mea-
sured with 10 seconds averages. We selected the “best“ 10
second timeframe, where the throughput is calculated as e-
mail deliveries per second. This information gives us an
upper limit for the maximum sustainable throughput rate,
e.g., under normal conditions in the current environment,
no delivery rate above 145 e-mails/sec is expected at any
time. That belongs to 580 kBytes/s (or4640kb/s) transfer
rate.

While the throughput data in the phases gives some in-
sight into the delivery process, the real interesting thingis
the total delivery time. The throughput rate shows that the
delivery was constant throughout the delivery process and
the system was fully loaded throughout the test.

From Table 1 we can calculate the average throughput of
the e-mail server. We show the calculated values in Table 2.
The conclusion of the table is that an expected throughput
rate (for long time calculations) in our non content-filtering
environment can be between 17-64 e-mail messages per
second, that gives about 68-256 kBytes/s (544−2048kb/s).
This result shows that an SMTP server can be overloaded
even within a typical Small Office Home Office (SOHO)
system, because the SOHO’s ADSL connection has a higher
bandwidth than the bandwidth needed to carry out an over-
loading attack against the SMTP server.

In Table 3 we give some additional information about the
queuing activity of the different MTA setups. During our
test no e-mail message was lost, therefore the total num-
ber of delivered e-mail messages is constant. (To achieve
this, we had to set the RefuseLA parameter of the send-
mail MTA very high to avoid connection drops which are
not tolerated by our test tools.) However, some differences
of workflow can be seen here. For example, Sendmail deliv-
ers a lot of messages during the queuing process, but there-
fore it takes more time to get every e-mail message into the
queue.

5.1.2 Load limiting - queueonly load in EXIM

While using Exim MTA we can set the queueonly load pa-
rameter to the value of the load average where the server
should stop instant delivering and start queuing only mode.
In default configuration this option is not used and delivery
is constant even during high load situations.

We measured the performance of Exim with and without
the queueonly load parameter and summarized the results
in Table 4. We can see that the flow of the process slightly
differs (and of course the maximum load average and sys-
tem response time also differs, but we made no exact mea-

Table 1: Performance - No Content Filtering

MTA Maximum
through-
put
during
Phase 1
& 2 (e-
mail/sec)

Maximum
through-
put
during
Phase 3

Avg.
Total
time
for
de-
liv-
ery

Std.
dev.

Qmail 7.4 145 412.8 15.50
Exim 30.8 60,2 499.0 4.85
Postfix 26.4 145.2 236.2 5.45
Sendmail 31.6 51.2 543.2 10.16
Microsoft
Ex-
change

16.8 35.6 869.0 23.92

Table 2: Average Throughput - No Content Filtering

MTA Avg. throughput
(email/sec)

Std. Dev

Qmail 36.37 1.35
Exim 30.06 0.29
Postfix 63.53 1.46
Sendmail 27.62 0.53
MS Exchange 17.27 0.49

Table 3: Queuing Behaviour - No Content Filtering

MTA Time
for
Phase
1 & 2

Std.
dev.

Avg.
emails
delivered
during
Phase 1
& 2

Std.
Dev.

No. of
deliv-
ered
emails

Qmail 133.2 4.9 930.4 105 15000
Exim 296.8 11.6 4639.2 287 15000
Postfix 100.6 0.9 1612.4 113 15000
Sendmail 417.0 7.3 9974.4 280 15000
MS Ex-
change

489.8 14.0 5734.2 147 15000

surements). The average throughput rates are very close to
each other in this two cases, therefore we can see that the
queuing properties does not modify the system performance
too much, even the overhead of the queuing process, which
is cause by the higher file system activity, cannot be distin-
guished.

Table 4: Exim - With And Without Queueonly load Parameter

Limit for Load Aver-
age

Maximum
through-
put
during
Phase
1 & 2
(email/sec)

Std.
dev.

Maximum
through-
put
during
Phase 3

Std.
dev.

Total
delivery
time

Std.
dev.

Average
through-
put
(email/sec)

Std.
dev.

No limit N/A N/A 33.8 0.83 505.6 2.1 29.67 0.12
queueonly load = 8 30.8 1.92 60.2 1.09 499.0 4.8 30.06 0.29

5.2 Content filtering

A large number of content filter solutions (virus and spam
scanning) are available in commercial and open-source free
software. As our resources to carry out investigations were
limited, we decided to test only Amavisd-new ([19]), Cla-
mAV ([20]) and Spamassassin ([21]) under different set-
tings. Amavisd-new is a daemonized middleware for con-
tent filtering in SMTP servers. It uses various utilities to
manipulate e-mail messages, then it can invoke a number of
virus scanning engines and utilize spamassassin for spam
scanning purposes. Amavisd can be integrated in many
MTAs, in our case we selected Exim with SMTP forward-
ing to invoke amavisd. During testing of content filtering
solutions we still used 3 attacking computers and 5 threads
for every computer, but we tested the delivery of only 1500
e-mails to save time. Our test e-mails did not contain mime
attachments nor viruses.

We tested amavisd with the popular free ClamAV an-
tivirus. We tested two possible methods, using clamscan,
and using the daemonized version of ClamAV called clamd
(in this case accessed by the amavisd internal client code
for clamd). The clamscan is a stand-alone executable for
virus scanning in individual files. To use it, the middle-
ware should execute the clamscan process every time an e-
mail is received, therefore it creates a huge overhead (load-
ing the executable, loading virus signatures etc.). Daemo-
nized virus scanning engines are expected to be more ef-
ficient in content filtering environment. Such a solution is
Clamd, which is constantly loaded into the memory, client
programs can communicate with the clamd daemon through
a unix socket. Our results are shown in Table 5.

As we can see, the throughput (4.03 e-mail/s in case of
clamscan and 6.81 with clamd) is significantly lower than
the original 30.06 email/s rate. As we expected, content
filtering has a huge impact on performance. We can also
see that clamd is much more efficient than clamscan.

For spam scanning, we set up different scenarios with
amavisd, clamd and spamassassin. Spamassassin is a

Table 5: Content Filtering - Clamscan vs. Clamd
setup Total

time to
deliver
(s)

Std.
dev.

Avg.
de-
livery
rate (e-
mail /
sec)

Std.
dev.

Exim, amavisd-
new, clamscan

372.5 7.77 4.03 0.08

Exim, amavisd-
new, clamd

220.5 6.36 6.81 0.19

framework for spam scanning, it can use different tools,
RBLs, Razor ([22]), Pyzor ([23]), bayesian filtering, DCC
([24]) and other plugins to distinguish spam and legitimate
e-mail (ham).

Our results are shown in Table 6. In the first test case
(first row) we ran spamassassin with razor and internal
bayes routines, and fed the SMTP server with fixed mes-
sages (generated by thesmtp-sourceutility). Then we used
random generated e-mail messages for our test with our dic-
tionary based random text generator. The random e-mail
message was still 4096 bytes long. The random text gen-
eration somewhat slowed down the e-mail injection, but we
found no significant difference in average throughput.

Constant e-mail messages are sometimes cached by our
content filtering software, therefore testing the same mes-
sage multiple times will be significantly faster than testing
independent messages. This can be seen in the second row,
the average throughput is down to 1.59 from the 5.11 e-
mail/s. Turning off network-based tests (RBL, razor, etc.)
by setting localtestsonly, or turning off razor alone causes
nearly the same speed-up. Interestingly, turning off bayes
does not make a speed up, in fact, turning off bayes en-
gine makes spamassassin to work slightly slower than with
bayes. We could reproduce this behavior, but we do not
know the real reason behind this. Maybe the system was not

under full load during these tests because of the I/O locks,
so we guess that timings, processor and I/O scheduling has
a big role in this effect. We also set up mysql based bayesian
testing in spamassassin with a large bayes database, and
found it is somewhat faster than the internal bayes-storage
engine (1.9 vs. 1.59 e-mail/sec).

We can see, that an Exim MTA with amavisd-new, clamd
and spamassassin can result throughput as low as 1.54 e-
mail/c. As we used 4096 bytes payload in the messages, the
bandwidth is therefore around 6,3 kBytes/sec (50 kb/s). In
fact, this is only the size of the payload, so some additional
1000 bytes overhead in every message can be considered.

Table 6: Content Filtering - Spamassassin Scenarios
setup Avg.

total
time to
deliver

Std.
dev.

Avg.
de-
livery
rate

Std.
dev.

Spamassassin,
razor, bayes and
fix message

294.0 14.1 5.11 0.2

Spamassassin,
razor, bayes
and random
message

945.0 7.0 1.59 0.1

Spamassassin,
local testsonly,
random mes-
sage

448.0 15.5 3.38 0.2

Spamassassin,
no razor, bayes,
random mes-
sage

458.0 4.2 3.27 0.1

Spamassassin,
razor, no bayes,
random mes-
sage

975.1 7.4 1.54 0.1

Spamassassin,
razor, mysql-
bayes, and
random mes-
sage

789.5 9.6 1.90 0.1

6 ANALYSIS OF RESULTS

We tested the SMTP throughput in our test environment,
which can be a model for a basic real-life SMTP servers.
We found that the e-mail throughput (total average) without
content-filtering and without fine-tuning or tweaking can be
as high as 64 messages/second, whereas using a medium-

fast MTA (Exim - 30.06 e-mail/s) and turning on content
filtering can cause a performance drop to 1.54 messages/s.
These rates equal to 2.6 millions and 133 thousands of e-
mails/day. This looks huge, but in bandwidth the two values
are about 50 kb/s to 2000 kb/s + overhead. That means, a
network traffic as low as 50 kb/s or 2000 kb/s respectively
can cause full load on the system and create a DoS condi-
tion. That means, an SMTP server on a single ISDN line
(64kbps) can be under a DoS attack without consuming all
the network bandwidth.

Modern intrusion detection systems (IDS) can detect a
wide range of attacks by signature matching or statistical
analysis. Considering an attack with a number of random
e-mails sent to our mail server we cannot easily detect such
attack by signature matching. Statistical analysis can be
therefore a more sophisticated tool to detect such attacks.
Most of the state-of-the-art tools are designed to detect traf-
fic jumps or high traffic where the traffic reaches near to the
capacity of the network.

If we look at the results we can see that a 50 kb/s traffic
is so low comparing to the typical full network bandwidth,
that such an attack is not easily detectable with our current
tools.

DoS attacks are generally created with a number of zom-
bies. If a zombie computer creates network traffic with the
same statistical properties as normal, legitimate users, it is
not easily distinguished or filtered from the network. Of
course, content analysis can help, but as a perfect spam
filtering is not possible with our current tools, the per-
fect identification of attacking sources is also a hard prob-
lem. To send e-mail messages in an amount of about 130k
emails/day and to accomplish this with the statistical prop-
erties of legitimate users, the attacker will not need too
much more servers than several thousands.

We can say that to carry out successful DoS attack
against SMTP server seems to be much easier than pre-
viously thought and that successfully protecting servers
against such problems is a hard, but very important prob-
lem.

7 CONCLUSION

In real-life SMTP DoS condition is one of the most gen-
eral problems. Company administrator continuously try to
maintain the stability of their e-mail servers, but with in-
tended and unintended attacks (spam, virus, and such) the
SMTP servers often fail to perform properly.

We made empirical experiments on SMTP performance.
Measuring SMTP performance is not a simple task, as the
delivery process is complicated and different scenarios are
not easily comparable. We analyzed a number of different
MTAs in different environment regarding content-filtering.
We summarized our results in tables showing the gathered

statistical analysis and provided some description to helpits
understanding.

Our results show that even a relatively small number of
messages, small amount of bandwidth can harm an SMTP
server significantly. An e-mail flow of 1.54 messages / sec-
ond, that is about 50kb/s can fully load a server if it is using
content filtering software.

Our analysis was carried out by using generally available
hardware and software components and we used only small
tuning in the OS. Another problem is that the number of
software components and systems in our analysis was lim-
ited, but this can be extended in the future. Our results are
limited in direct applicability on real-life servers, but give
basis for engineering estimates (thumb rules).

The results also emphasize the vulnerability against so-
phisticated DoS attacks, where the usage of statistical anal-
ysis against attacks is limited.

As for future work, an extension of our measurements
is possible. We did not check the handling of attachments,
compressed files and viruses. We also did not investigate
the performance of the systems under different parameters
of the load generators (number of threads, number of e-
mails, size of e-mails). We are confident that these exten-
sions of the measurements can not harm the validity of our
current results, but can furthermore help to get an insight
into SMTP server performance factors and attack resilience.

REFERENCES

[1] B. Bencsath, I. Vajda ”Protection Against DDoS Attacks
Based On Traffic Level Measurements” 2004 International
Symposium on Collaborative Technologies and Systems,
2004, pp. 22-28., Simulation series vol 36. no. 1..

[2] Microsoft Corp., ”Exchange Server 2003
MAPI Messaging Benchmark 3 (MMB3)”
http://www.microsoft.com/technet/prodtechnol/ ex-
change/2003/mmb3.mspx

[3] F. Lau, S. H. Rubin, M. H. Smith, and L. Trajovic. ”Dis-
tributed denial of service attacks” In Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics,
pp. 2275–2280, October 2000.

[4] J. Mirkovic, J. Martin, P. Reiher, ”A Taxon-
omy of DDoS Attacks and DDoS Defense Mech-
anisms” Los Angeles, CA, University of Cal-
ifornia Computer Science Department, 2001.
http://citeseer.ist.psu.edu/article/mirkovic04taxonomy.html

[5] J. Mirkovic, P. Reiher, S. Fahmy, R. Thomas, A. Hussein, S.
Schwab, C. Ko, ”Measuring Denial-of-Service” Proceedings
of 2006 Quality of Protection Workshop, October 2006.

[6] Musashi, Y., Matsuba, R., Sugitani, K. ”DNS Query Access
and Backscattering SMTP Distributed Denial-of-Service At-

tack” IPSJ Symposium Series, Vol. 2004, No. 16, pp. 45-49
(2004)

[7] K. J. Houle, G. M. Weaver, N. Long, R. Thomas
”Trends in Denial of Service Attack Technology”
http://www.cert.org/archive/pdf/DoStrends.pdf

[8] M. Andree ”Postfix vs. qmail - Performance” http://www.dt.e-
technik.uni-dortmund.de/ ma/postfix/vsqmail.html

[9] M. Andree ”MTA Benchmark” http://www.dt.e-technik.uni-
dortmund.de/ ma/postfix/bench2.html

[10] ”Mail Call - Testing the Axigen, Kerio, and
Merak commercial mail servers” http://www.linux-
magazine.com/issue/73/CommercialMail ServersReview.pdf
, December 2006.

[11] Smtp-benchmark - a benchmarking suite to mea-
sure the performance of SMTP gateways, M. Balmer,
http://freshmeat.net/projects/smtp-benchmark/

[12] ”Performance Benchmarking - MailMarshal 6.0 SMTP”
http://www.nwtechusa.com/pdf/mmperformance.pdf

[13] Exim - MTA software” University of Cambridge,
http://www.exim.org/

[14] Qmail, Netqmail - MTA software, D. J. Bernstein and Qmail
community, http://www.qmail.org/

[15] Postfix - MTA software, W. Venema, http://www.postfix.org/

[16] Sendmail - MTA software, The Sendmail Consortium,
http://www.sendmail.org/

[17] Microsoft Exchange - MTA software, Microsoft Corp.,
http://www.microsoft.com/exchange/

[18] Eggdrop, a popular Open Source iRC bot,
http://www.eggheads.org/

[19] Amavisd-new - content checking middleware,
http://www.ijs.si/software/amavisd/

[20] Clam Antivirus - GPL virus scanner, http://www.clamav.net/

[21] Apache SpamAssassin - Open-source spam filter,
http://spamassassin.apache.org/

[22] Vipul’s razor - distributed, collaborative, spam detection and
filtering network, http://razor.sourceforge.net/

[23] Pyzor - a collaborative, networked system to detect
and block spam using identifying digests of messages,
http://pyzor.sourceforge.net/

[24] Distributed Checksum Clearinghouse (DCC) - co-
operative, distributed system to detect bulk mail,
http://www.rhyolite.com/anti-spam/dcc/

